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This paper explores how South American farmers adapt to climate by changing crops. We
develop a multinomial logit model of farmer's choice of crops. Estimating the model across
949 farmers in seven countries, we find that both temperature and precipitation affect the
crops that South American farmers choose. Farmers choose fruits and vegetables in warmer
locations and wheat and potatoes in cooler locations. Farms in wetter locations are more
likely to grow rice, fruits, potatoes, and squash and in dryer locations maize and wheat.
Global warming will cause South American farmers to switch away from maize, wheat, and
potatoes towards squash, fruits and vegetables. Predictions of the impact of climate change
on net revenue must reflect not only changes in yields per crop but also crop switching.
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1. Introduction

This paper uses cross-sectional evidence to explore how farm-
ers would adapt to exogenous environmental factors such as
climate and soils (Seo and Mendelsohn, 2007a). By comparing
choices of farmerswho face different environmental conditions
across the landscape, we examine quantitatively how farmers
would adjust their current choices in response to future climate.
In this specific paper, we apply this technique to study how
climate affects the choice of crops by South American farmers.
We quantify which crops farmers are likely to choose and how
dependent this choice is on climate. Understanding adaptation
is an important goal in itself to assist planning by policymakers
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and private individuals (Smith, 1997; Smit et al., 2000; Smit and
Pilifosova, 2001). However, understanding adaptation is also
important if one is interested in quantifying the impacts of
climate change (Mendelsohn et al., 1994). Forecasts of the
impact of climate on agriculture cannot rely solely on how
climate affects the yield of a specific crop. The forecasts must
also capture crop switching. That is, the forecasts must
recognize that farmers will change what they plant in order to
maximize profits in each new climate. Studies that assume
farmers will continue to growwhat they currently grow even as
yields decline will overestimate damages (Examples in Latin
America areDowning, 1992;DeSiqueira etal., 1994;Magrinetal.,
1997; Hofstadter et al., 1997; Conde et al., 1997).
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Climate impact studies have consistently predicted exten-
sive impacts to the agricultural sector from climate change
across the globe (Cline, 1992; Rosenzweig and Parry, 1994;
Pearce et al., 1996; Tol, 2002). A large set of these studies have
focused on the reduction of yields of specific crops in warmer
temperatures (Reilly et al., 1996; McCarthy et al., 2001).
Because these studies assume that farmers make no changes
in crops, these studies predict large yield losses from climate
change and therefore large losses in net revenue. Studies that
do allow crops to change (Mendelsohn et al, 1994; Adams et al.,
1999; Seo and Mendelsohn, 2007b) predict that farmers will
move away from crops with low yields and substitute new
crops that will perform better in the new climate. Studies that
allow adaptation predict smaller damages. However, empiri-
cal analyses of just how much farmers are likely to switch
crops in response to climate are rare in low latitude countries.
The only exception is a new study of farmers in Africa
(Kurukulasuriya and Mendelsohn, 2007). This paper follows
the approach taken in the African paper but explores the
choices of farmers in South America.

The theoretical choice model is developed in the next
section. Section 3 discusses how data were collected from over
2000 farmers in seven countries across South America.
Analysis of the sample reveals 949 farmers who chose to
grow crops. A multinomial logit model is then estimated to
reveal the role that climate plays in crop choice. Section 4
discusses this estimation procedure and the empirical results.
Three climate change scenarios from Atmospheric Oceanic
General Circulation Models (AOGCM's) are then examined in
Section 5 to simulate the effects of climate change on the
choice of crops in the coming century. The paper concludes
with a summary of results and policy implications.
2. Theory

In this paper, farmers are assumed to maximize their profits.
Farmers choose the desired species to yield the highest net
profit. Hence, the probability that a crop is chosen depends on
the profitability of that crop. We assume that farmer i's profit
in choosing crop j ( j=1,2,…, J) is

pij ¼ Vj Ki;Sið Þ þ ej Ki;Sið Þ ð1Þ
where K is a vector of exogenous characteristics of the farm
and S is a vector of characteristics of the farmer. The vector K
includes climate, soils, and price variables and S includes the
age of the farmer and family size. The profit function is
composed of two components: the observable component V
and an unobservable component that is in the error term ε.
The farmer will choose the crop that gives him the highest
profit. When farmers select multiple crops, the crop choice is
defined as the single crop with the greatest net revenue.
Alternatively, we could have examined all combinations of
crops that farmers select (Seo and Mendelsohn, 2007a).
However, the number of combinations is large and becomes
difficult to model because farmers reported more than 50
different crops. We assume that only the primary crop (the
crop that yields the highest net revenue) matters. The choices
are consequently mutually exclusive and exhaustive, i.e. the
farmer must pick one and only one of the available crops.
Defining Z=(K,S), the farmer will choose crop j over all
other crops k if:

p4j Zið ÞNp4k Zið Þ for 8k p j: or if ek Zið Þ � ej Zið ÞbVj Zið Þ � Vk Zið Þ for k p j
� �

:

ð2Þ

More succinctly, his problem is:

argmax
j

p41 Zið Þ;p42 Zið Þ; :::;p4J Zið Þ
h i

ð3Þ

The probability Pij for the jth crop to be chosen is then

Pij ¼ Pr ek Zið Þ � ej Zið ÞbVj � Vk
� �8k p j where Vj ¼ Vj Zið Þ: ð4Þ

Assuming that ε is independently Gumbel distributed and
the profit function can be written linearly in its parameters,
the probability can be calculated as follows:

Pij ¼
eZijgj

PJ
k¼1 eZikgk

ð5Þ

which gives the probability that farmer i will choose crop j
among J species (McFadden, 1973; Train, 2003). The para-
meters can be estimated by the Maximum Likelihood Method,
using an iterative nonlinear optimization technique such as
the Newton–Raphson Method. These estimates are CAN
(Consistent and Asymptotically Normal) under standard
regularity conditions (McFadden, 1999).
3. Description of data

This study is part of a World Bank project entitled ‘Incorpora-
tion of Climate Change to the Strategies of Rural Development’
(Mendelsohn et al., 2007). The project collected economic
surveys at the farm level from seven South American
countries: Argentina, Brazil, Chile, Columbia, Ecuador, Uru-
guay, and Venezuela. The countries were selected to represent
the wide range of climate throughout South America and
included representatives from both Southern Cone and
Andean regions. Districts within each country were selected
to provide as much within country climate variation as
possible. Sampling was clustered in villages within districts
to reduce the costs.

The surveys asked detailed questions on farming activities
during the one year period of July 2003 to June 2004
(Mendelsohn et al, 2007). Initial surveys were designed and
pretested with country team members cooperating in the
project. Data collection and initial coding were completed by
each country team. The data was then cleaned to remove
errors and omissions. The original survey interviewed over
2000 farmers. We removed observations with important
missing data. About half the remaining farms were household
farms and the other half were commercial farms.

The study focuses on the sevenmajor crops grown in South
America: fruits and vegetables (31%),maize (24%), wheat (15%),
squash (11%), rice (8%), potato (7%), and soybeans (4%). The
frequency that each of these crops is the primary crop is
shown in parentheses above. Altogether these seven crops
generated about 85% of the total revenue from crops in the
sample. Farmers that chose other crops as the primary crop
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were dropped. This process of identifying observations leaves
949 farms in the analysis.

Climate data came from two sources: US Defense Depart-
ment satellites and weather station observations recorded by
theWorldMeteorological Organization (WMO, 2004).We relied
on satellite observations for temperature and interpolated
ground station data for precipitation (see Mendelsohn et al.,
2007 for a detailed explanation). Monthly climate data was
averaged to construct seasonal climate data. In the southern
hemisphere, summer is the average of December, January and
February; fall is the average of March, April and May, winter is
June, July, and August, and spring is September, October and
November. The northern hemisphere seasons are six months
apart. For example, summer in the northern hemisphere
corresponds to winter in southern hemisphere.

Soil data were obtained from the Food and Agriculture
Organization's (FAO) digital soil map of the world CD ROM
(FAO 1999). The Latin American soil data was assigned to each
district using GIS (Geographical Information System) by over-
lapping the dominant soil map of Latin America over a district
map of Latin America. The data set reports 26 dominant soil
types.
4. Empirical results

In Table 1, we estimate the probability each species is selected
using amultinomial choice model (Eq. (5)). The choice of fruits
and vegetables has been left out of the regression as the base
case. The probability of choosing each crop was assumed to be
a function of summer and winter temperature and summer
and winter precipitation. Previous empirical research of
temperate countries suggests that all four seasons of the
yearmay be significant (Mendelsohn et al., 1994). Although we
explored a four season model, we were not able to estimate
Table 1 –Multinomial logit crop selection model for July 2003 to

Variable Maize Potatoes

Intercept 4.444 −23.338
Temperature summer 0.025 0.130
Temperature summer sq −0.001 −0.029
Precipitation summer −0.004 0.234⁎
Precipitation summer sq 0.00003 −0.002⁎
Temperature winter −0.122 1.844⁎
Temperature winter sq 0.003 −0.073⁎
Precipitation winter 0.005 −0.058⁎
Precipitation winter sq 0.0001 0.0004⁎
Soil Lithosols 0.013 0.074⁎
Soil Luvisols −0.021⁎⁎ 0.039⁎
Soil Planosols 0.007 0.024⁎
Computer dummy 0.269 0.761
Age head 0.009 0.038
Log household size −0.909⁎ −1.215⁎
Log education 0.106 1.004⁎
Maize price 0.460⁎ 0.688
Wheat price 18.724⁎ −44.745⁎
Squash price −26.401⁎ 79.127 −
Mango price −2.015 −7.649
Tomato price 4.290⁎ −2.876

Note: 1) Fruit is the omitted choice. 2) Likelihood ratio test: Pb0.0001, Lag
significance at 5% and ⁎⁎ implies significance at 1% level.
significant results for each season. This sample is heavily
dominated by tropical observations, where the four seasons
are not as distinct. Other explanatory variables included soil
variables, farmer age, farmer education, household size,
prices, and a dummy variable for computer. Other variables
such as gender were not significant. The model is significant
according to three tests of global significance. Most of the
individual coefficients are significant. Positive (negative)
coefficients imply that the probability of choosing each crop
increases (decreases) as the corresponding variable increases.

The coefficient on education is positive and significant for
every crop in Table 1 except for rice and maize which are not
significant. This result implies that lower educated farmers
tend to grow fruits and vegetables, the omitted choice.
Potatoes are more often chosen when the dominant soil at
the farm is a Lithosol. When the dominant soil is a Luvisol,
farms tend to choose maize less often, but potatoes more
often. Wheat, potatoes, and soybeans are more likely to be
chosen if a farm has Planosol soils. Farms with computers are
more likely to choose potatoes and rice. It is not clear whether
this equipment actually enhances the profitability of these
crops or whether the computer is a proxy for a missing
variable such as technology or market access. Larger farm
families are less likely to choose maize, potatoes, soybeans,
and wheat. These crops are easily mechanized and so may be
selected by farmers with smaller families. Older farmers are
more likely to choose wheat. The remaining effects are not
significant.

Only two of the own prices are significant: maize and
wheat. Both coefficients are positive as expected. Farmers are
more likely to choose these cropswhen their prices are higher.
The remaining significant price effects are cross price terms.
When wheat prices are higher, farmers are more likely to pick
maize, rice and soybean. When maize prices are higher, they
aremore likely to pick rice but less likely to pick squash.When
June 2004 season

Rice Soybeans Squash Wheat

−11.823 −6.536 7.774 5.292
4.046⁎ 0.528 −1.255 −0.091

−0.151⁎ −0.010 0.036 0.006
0.045⁎ 0.002 0.044⁎ 0.009

−0.00007⁎ 0.00002 −0.00008⁎ 0.00002⁎
−1.380⁎ 0.088 −0.149 −0.561⁎
0.078⁎ −0.013 −0.002 0.004
0.097 0.052⁎⁎ 0.014 −0.005
0.0002 −0.001⁎ −0.00001 0.0003⁎

−0.007 0.006 0.011 −0.015
0.031 −0.015 −0.152 −0.015

−0.052 0.026⁎ −0.005 0.031⁎
0.656 −0.108 −0.066 0.057
0.004 0.017 0.005 0.035⁎

−0.937 −0.998⁎ −0.031 −0.841⁎
−0.030 1.085⁎ 0.629⁎ 1.512⁎
1.563⁎ 0.099 −2.45⁎⁎ 0.104

27.75⁎⁎ 16.910⁎ 4.026 33.562⁎
113.900 −20.114⁎ −7.197 −27.264⁎
−11.59⁎⁎ 0.391 −1.387⁎ −2.009
10.581 −2.765 0.451 −19.580⁎

range multiplier test: Pb0.0001, Wald test: Pb0.0001. 3) ⁎ implies



Fig. 1 –Estimated probabilities for crops to be chosen over temperature (°C).

Fig. 2 –Estimated probabilities for crops to be chosen over precipitation (mm/month).
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Table 2 –Marginal effect of climate change on crop choice in South America

Maize (%) Potato (%) Rice (%) Soybean (%) Squash (%) Wheat (%) Fruit (%)

Baseline (%) 19.5 6.8 4.8 7.9 8.0 14.4 38.6
Temperature (°C) −0.2 +0.5 +0.4 +0.2 +0.7 −2.3 +0.8
Precipitation (mm/month) −0.3 +0.2 +0.1 0.0 +0.1 −0.1 −0.2

Table 3 – South American average AOGCM climate
scenarios

Current 2020 2060 2100

Temperature (°C)
CCC 18.1 19.5 (+1.4) 20.8 (+2.7) 23.2 (+5.1)
CCSR 18.1 19.4 (+1.3) 20.4 (+2.2) 21.3 (+3.2)
PCM 18.1 18.7 (+0.6) 19.5 (+1.3) 20.1 (+2.0)

Rainfall (mm/month)
CCC 119 116 (−2.6%) 107 (−9.5%) 109 (−7.7%)
CCSR 119 120 (+1.5%) 119 (0.0%) 114 (−3.8%)
PCM 119 128 (+8.2%) 133 (+11.9%) 129 (+8.4%)
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squash prices are higher, they are less likely to pick maize,
soybean, and wheat. Higher tomato prices are associated with
higher likelihood to choose maize but lower likelihood to
choose wheat. These positive cross price terms imply a
complementarity between the two crops in question.

Maize does not have any significant climate coefficients
but all the other crop choices have at least one significant
climate coefficient. There are many varieties of maize so that
it can effectively grow in many climate zones in South
America. The crop is a “generalist” in the sense that it is
grown throughout South America. In contrast, the other crops
are more specialized and grow in narrower temperature or
precipitation ranges. The climate variables consequently
significantly influence their choice. Rice, for example, is very
sensitive to summer and winter temperatures and to summer
precipitation. Potatoes are very sensitive to winter tempera-
tures and summer and winter precipitation. Squash is
sensitive to summer precipitation. Wheat is sensitive to
winter temperature and summer and winter precipitation.
Fruits and vegetables generally prefer warmer temperatures.
Soybeans are sensitive to winter precipitation.

Fig. 1 reveals that the choice of crop varieties in South
America is generally temperature sensitive. The graph
describes the relationship between the probability of choosing
a crop and annual mean temperature measured in Celsius.
Crops that are not very temperature sensitive tend to have flat
response functions; the probability of adoption remains the
same regardless of the temperature. For example, maize is
grown across the full range of temperatures in the sample. The
remaining crops tend to have preferred temperature ranges.
For example, the probability of choosingwheat and potatoes is
higher in farms at the coolest end of the sample. The reader
should disregard the reappearance of potatoes at very high
temperatures as potatoes are not chosen at these very high
temperatures. By contrast, the probability of choosing fruit is
high in farms that are at the warmest end of the sample. The
rest of the crops have specific ranges within the sample. Rice
and soybeans are chosen most often when temperatures are
close to 16°C. Squash ismost often chosenwhen temperatures
are close to 18 °C. The average temperature in the sample is
18 °C.

Fig. 2 displays the estimated relationship between the
probability of choosing the seven crops and annual precipita-
tion measured in millimeters per month. The mean annual
precipitation in South America is 118 mm/month.2 Almost
all farms in our sample are located in areas with less than
200 mm/month of precipitation. The probability of choosing
soybeans and potatoes declines, the wetter the farm is. By
contrast, moving from dry to wet farms increases the prob-
2 In contrast, African annual mean temperature is 23° degree
Celsius and annual mean precipitation is around 67mm/month.
South America is much cooler and wetter than Africa.
ability of selecting fruit.Wheat and squash exhibit a hill-shaped
pattern, peaking at around 70 and 200 mm/month respectively.
Maize and rice have a U-shaped relationship with precipitation
with a minimum of 140 and 90 mm/month respectively.

Because the coefficients and shapes in Table 1 and Fig. 1 are
nonlinear, it is not transparent what effect changes in
temperature or precipitation would have on crop choice. In
Table 2, we calculate the marginal effects of a slight
temperature increase and a slight increase in precipitation
evaluated at the mean climate of the sample. As temperature
increases by 1 °C, farmers tend to choosemaize andwheat less
often while they choose potatoes, rice, soybean, and fruits
more often. If precipitation increases by 1 mm, farmers move
away from maize, wheat, and fruits to potato, rice, and
squash. Symmetrically, if climate change caused precipitation
to fall, farmers would move in the opposite direction.
5. Simulations of crop switching

In this section, we simulate the consequences of climate
change on crop selection behaviors using the parameter
estimates in the previous section. We start with a baseline
scenario that assumes farmers will continue to plant their
current crops if climate remains unchanged. That is, we do not
model other possible reasons why crop choice might change
over the next hundred years. We look at only the effects of
climate change.We examine a set of climate change scenarios
predicted by Atmospheric Oceanic General Circulation Models
(AOGCM's). The climate scenarios reflect the A1 SRES (Special
Report on Emissions Scenarios of the Intergovernmental Panel
on Climate Change) scenarios from the following three
models: the Canadian Climate Center (CCC) scenario (Boer
et al. 2000), Centre for Climate System Research (CCSR)
scenario (Emori et al. 1999), and the Parallel Climate Model
Note: 1) CCC refers to the Canadian Climate Center scenario, CCSR
the Center for Climate Systems Research scenario, and PCM the
Parallel Climate Model scenario. 2) ‘Current’ refers to the baseline
climate for 1970–2000.



Table 4 – Effect of climate change scenario on crop choice in South America

Maize (%) Potato (%) Rice (%) Soybean (%) Squash (%) Wheat (%) Fruits (%)

Baseline 19.5 6.8 4.8 7.9 8.0 14.4 38.6

2020
CCC −0.7 −1.4 1.3 −0.5 1.9 −0.7 0.2
CCSR −1.5 −1.8 1.7 −0.4 2.2 −0.2 0.0
PCM 1.9 4.9 0.0 −1.2 −2.2 −4.9 1.4

2060
CCC −1.2 −0.8 0.3 −1.1 4.3 −2.2 0.7
CCSR −0.3 −2.0 0.3 0.3 3.2 −3.1 1.6
PCM 2.2 3.8 0.9 −1.1 −1.7 −6.3 2.1

2100
CCC −3.3 2.2 1.1 −3.3 9.7 −5.0 −1.3
CCSR −0.7 −2.5 0.1 −0.6 5.5 −3.0 1.1
PCM 3.1 2.7 −0.1 −1.2 −1.3 −6.5 3.2

Note: 1) CCC refers to the Canadian Climate Center scenario, CCSR the Center for Climate Systems Research scenario, and PCM the Parallel
Climate Model scenario. 2) ‘Baseline’ refers to the observed distribution in the sample.
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(PCM) scenario (Washington et al. 2000). We use country level
climate change scenarios in 2020, 2060, and 2100 from each
climate scenario. The change in temperature predicted by
each climate model is added to the baseline temperature in
each district. The percentage change in precipitation is
multiplied by the baseline precipitation in each district. This
gives us a new climate prediction for every district in South
America for each scenario.

Table 3 summarizes the climate scenarios of the three
models for the years 2020, 2060, and 2100. The models predict
a broad set of scenarios consistent with the range of outcomes
in the most recent IPCC report (Intergovernmental Panel on
Climate Change, 2007). In 2100, PCM predicts a 2 °C tempera-
ture increase in South America whereas CCC predicts a 5 °C
increase. Rainfall predictions are noisier: PCM predicts rainfall
to increase by 8% by 2100 whereas CCC predicts rainfall to
decrease by 8%. CCSR scenario predicts changes of the
magnitude between that of PCM and of CCC for both
temperature and precipitation. Examining the path of climate
change over time reveals that temperatures are predicted to
increase steadily until 2100 for all three models but precipita-
tion will vary across time. The climate models also predict
slightly different climate changes in each country.

We assume that the cross-sectional evidence used in the
estimation is appropriate to predict future changes in long run
equilibriums. The parameters from the estimated choice
model in Table 1 are used to simulate the impacts of climate
change on the probabilities of choosing a particular crop for
each climate scenario in Table 3.

Table 4 describes the results. The dryer and hotter CCC and
CCSR scenarios predict that farmers would choose rice, squash,
and fruits and vegetables more often, but maize, potatoes,
soybean, and wheat less often by 2020. With the milder and
wetter PCMscenario, farmerswill pickmaizeandpotatoesmore
often in addition to fruits and vegetables. There is no noticeable
effect on rice. They tend to choose soybean, rice andwheat less
often under PCM scenario. In all three climate scenarios, the
direction of the change in crops remains the same but the
magnitude of the crop switching grows. More farmers switch as
the climate scenario becomes more severe. For example, the
amount of crop switching increases in 2060 and again in 2100.
Further, comparing the climate scenarios, the more severe the
climate scenario, the more likely farmers switch crops.
6. Conclusion and policy discussions

This paper uses a multinomial choice model to capture the
choice of crops made by farmers. The model is estimated
across 949 farmers in South America. We observe that the
choice among the seven most popular crops in South America
varies with climate. Farms that are cooler are more likely to
choose potatoes and wheat, average temperature farms tend
to choose maize, soybeans and rice, and farms in warm
locations choose fruits and vegetables and squash. Farms in
dry locations tend to choose maize and potatoes, farms in
moderately dry conditions tend to pick soybeans and wheat,
farms in wet conditions choose fruits and vegetables, squash,
and rice. These cross-sectional results suggest that farmers
have adjusted crop choice to fit their local climate conditions.

Although crop switching has not generally been captured
by the climate change impact literature, crop switching is
quite consistent with broad observations of where species are
currently located. Maize is grown from Argentina to Vene-
zuela. Potatoes are concentrated in the mountains of Chile
and Columbia. Rice is the crop of choice in Ecuador. Soybeans
and squash are concentrated in Uruguay, northern Argentina,
and southern Brazil. Wheat is chosen in cooler parts of Chile.
Fruits are the primary choice of hot Brazilian farms. If climate
changes, this current distribution of crops across the land-
scape in South America will shift as individual farmers switch
crops to respond to a new climate. Themodel anticipates how
farmers might switch from cool loving crops in South America
to warm loving crops currently grown in South America. The
model does not consider new crops that might get introduced
into the crop mix from either importation or research. The
model therefore underestimates the likely substitution avail-
able in the future. On the other hand, the research is focusing
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on long term adaptation. These changes may take farmers a
long time to make. It is important to recognize these
adaptations will not be instantaneous.

The crop choice model is quite consistent with the
response functions from Africa (Kurukulasuriya and Mendel-
sohn 2007). This study also found thatmaizewas grown across
many temperature zones, that wheat favored cool dry regions,
and that fruits and vegetables tended to be chosen in warmer
wetter places.

We simulate climate change impacts for the three AOGCM
scenarios based on the parameter estimates from the choice
model. The dryer and hotter CCC and CCSR scenarios predict
that farmers would choose squash, fruits and vegetablesmore
often and maize, potatoes, soybeans, and wheat less often by
2020. There is no noticeable effect on rice.With themilder and
wetter PCM scenario, farmers will pick potatoes and maize
more often in addition to fruits and vegetables. These
differential effects on crops are magnified over time.

In interpreting these results, there are several caveats that
should be kept in mind. First, this analysis does not include
price effects. Large changes in crop prices may alter the
results. Second, the analysis does not take into account carbon
fertilization. If it affects all crops identically, it may notmatter.
However, evidence suggests that some crops may benefit
more from carbon fertilization than others. Third, we assume
that adaptations can take place as needed. For example,
farmers can switch from one crop to another as temperature
increases and rainfall decreases. However, this may not be the
case if the adjustment requires a heavy capital investment.
Fourth, we assume that in forecasting climate change impacts,
the only thing that changes in the future is climate. Many
things, however, will change over the century such as
population, technologies, institutional conditions, and reli-
ance on animal power. Future studies should address these
issues and provide ever more accurate measures of climate
change impacts. Finally, the model does not include every
variable that might influence crop choice. There remains the
possibility that an omitted variable has biased the results.

Unfortunately, it was not possible to estimate incomes per
crop as a function of climate because there were not enough
observations of each crop. If conditional incomes could be
estimated by crop, researchers could explicitly model crop
switching and predict the overall economic impacts of climate
change on South American farmers.
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